浙江某码头工程施工方案

浙江某码头工程施工方案
仅供个人学习
反馈
资源编号:
资源类型:.zip解压后doc
资源大小:364.03K
资源类别:施工组织设计
资源ID:105011
免费资源

资源下载简介

浙江某码头工程施工方案简介:

浙江某码头工程施工方案通常会包括以下几个关键步骤和考虑因素:

1. 项目背景:首先,会介绍项目的地理位置、港口等级、货物类型、预计吞吐量等基本信息,以及建设的必要性和紧迫性。

2. 设计规划:根据码头的功能需求,设计码头的类型,如深水岸线码头、集装箱码头、散货码头等。同时,会规划泊位的数量、长度、航道宽度等,以及配套设施如仓库、装卸设备等。

3. 土地准备:详述对施工区域的地质勘探和评估,包括土壤性质、地下水位、地质稳定性等,以确保基础的稳固。

4. 施工流程:包括基础开挖、桩基施工、主体结构建设(码头面、桥墩、栈桥等)、设施安装等关键环节的技术方案和时间表。

5. 安全与环保:制定严格的安全措施,如防洪、防震、防淹等,同时考虑环保要求,如减少施工噪音和扬尘,废水处理,废弃物处置等。

6. 项目进度与质量控制:设定明确的施工节点和里程碑,采用先进的项目管理方法,如施工图深化、BIM技术等,确保工程质量和进度。

7. 预算与风险管理:详细列出项目的投资预算,包括材料费用、人工费用、设备租赁等,同时识别和评估可能的风险,如天气影响、施工难度、政策变化等,并制定应对策略。

8. 后期运营与维护:考虑码头的后期运营维护,如设备维护、人员培训、环保措施的持续执行等。

以上只是一个大致的框架,具体的施工方案会根据项目的实际情况和相关法规进行详细规划。

浙江某码头工程施工方案部分内容预览:

灰色,饱和,软~可塑,无层理,土质较均一,切面稍显光滑,粘塑性一般,偶夹少量碎石,局部见未见分解植物残骸。埋深21.0~37.8m,厚度3.5~6.8m。

灰色夹灰黄色,饱和,稍密~中密,厚层状,土质不均,卵石径约3~5mm,次棱角状,含量约5~20%,局部达50~60%,成分为凝灰岩;角砾含量30~50%,次棱角~次圆状,成分为凝灰岩;余为粘性土及少量砂。埋深8.4~62.4m,厚度0.6~4.6m。

灰黄~灰色,湿,稍密~中密。贝壳碎屑含量80~90%,粒径0.2~2.5cm,个别达4cm,其余为粘性土充填,钻进较困难。仅CZM14号钻孔揭露,埋深26.0m,厚度7.9m。

灰色,饱和,流塑,土质均一,切面光滑,粘塑性一般,含贝壳碎屑较多,具高压缩性。埋深20.6~47.5m,厚度1.4~5.4m。

灰绿、灰黄色间夹灰色,饱和,软~硬可塑,具层理,夹薄层状粉砂,厚1~3mm,切面光滑,粘塑性较好DB4413∕T 5-2019 城镇排水设施养护维修服务规范,刀切时粘阻力大,用手捻摸有轻微砂感,韧性好,干强度高,见铁锰质渲染;局部含10~30%的碎石或角砾,成分为凝灰岩;局部含贝壳碎屑,偶见泥质结核及植物残骸。埋深10.2~64.3m,厚度0.6~14.2m。

灰绿、灰黄间夹灰白色,饱和,可塑~坚硬,无层理,土质较均一,切面稍显粗糙,粘塑性一般,含铁锰质斑,部分高岭土化,偶见砂砾石。埋深12.2~66.2m,厚度1.6~11.1m。

灰绿、灰黄色,饱和,可塑~硬塑,局部坚硬,无层理,切面略显粗糙,土质较均一,干强度一般,韧性一般,含少量贝壳碎屑和氧化铁,见零星泥质结核。埋深26.0~56.5m,厚度1.0~5.9m。

灰~灰黄色,中密,饱和,厚层状,土质不均,砾含量约25~40%,局部含量较高,达50~65%,亚圆状为主;可见少量卵石,分布不均。圆砾、卵石成分均为凝灰岩。埋深33.6~63.5m,厚度0.4~3.9m。

灰色,软~可塑,厚层状,粉粒含量不均。埋深52.0m,厚度2.0m。

灰黄、灰绿色,硬可塑,无层理,切面较粗糙,略有砂感,粘塑性一般,干强度较高,含铁锰质斑和少量云母碎屑,局部含少量碎石。埋深31.3~63.9m,厚度0.7~8.6m。

灰色,饱和,软可塑,无层理,切面稍光滑,土质较均一,粘塑性一般,夹薄层状粉砂,可见少量未腐化植物碎屑,偶见贝壳碎屑,局部含砂砾。埋深9.6~65.5m,厚度1.2~8.1m。

灰色,可塑,厚层状,粉粒含量不均,局部含少量碎石,呈强风化状,含较多植物残骸。埋深58.5~68.5m,厚度3.5~5.9m。

灰色,很湿,中密,厚层状,层理不明显,局部夹薄层粉砂,切面不光滑,手捏有砂感,见少量贝壳碎片。埋深28.6~63.0m,厚度1.1~8.3m。

灰绿、灰黄色,饱和,硬可塑~坚硬,厚层状,切面稍光滑,土质不均,夹薄层状粉砂,含铁锰质结核,喊有机质和云母碎屑,局部含砂砾。埋深20.3~75.0m,厚度1.1~22.2m。

灰绿、灰黄色,硬塑~坚硬,厚层状,土质较均一,粘塑性一般,刀切时粘阻力大,用手摸有轻微砂感,夹粉砂薄层,层厚约1~2mm,切面稍显光滑,见铁锰质渲染,偶含砾砂。埋深21.5~74.1m,厚度2.7~10.0m。

灰绿、灰黄色,饱和,可塑~坚硬,无层理,切面较光滑,稍有光泽,土质不均,韧性中等,干强度中等,粘塑性较好,含铁锰质斑及大量高岭土斑。底部含较多碎砾石,粒径0.3~4cm不等,次棱角状,碎石约占5~30%,粒径2~4cm,角砾约占10~20%,中粗砂约占5~15%。埋深29.9~71.7m,厚度1.2~10.0m。

灰绿、灰黄色,饱和,中密状,以圆砾为主,含量30~40%,亚圆状;卵石分布不均,一般含量20~30%,局部含量50~60%,亚圆状为主,粒径3~5cm,个别7cm。卵石、圆砾成分为凝灰岩,其它为中粗砂、粘性土充填。埋深34.9~65.5m,厚度0.4~2.4m。

灰绿、灰黄、灰白色,饱和,可塑~坚硬。无层理。切面光滑,韧性强,干强度高,粘塑性一般,含铁锰质斑,局部可见少量角砾和碎石,粒径0.5~3cm。埋深54.4~70.1m,厚度1.4~3.6m。

青灰色,硬可塑,厚层状,切面粗糙,见铁锰质渲染,含腐植物。埋深64.2m,厚度3.6m。

灰色,可塑,厚层状,切面粗糙,见铁锰质渲染,含腐植物。埋深64.2m,厚度3.6m。

灰色,黄灰色,饱和。中密~密实。砾石呈次棱角状,分选性差,约占25~40%,粘性土约占20%,其余中粗砂,切面粗糙砂感。埋深12.5~54.5m,厚度1.7~2.5m。

灰绿、灰黄色,饱和,中密~密实,厚层状,碎石径约2~5cm,含量约40~55%,角砾约10~20%,余者粘性土及砂。碎砾石呈棱角状、次棱角状。土质不均,局部碎石含量较少。埋深8.6~80.0m,厚度0.5~6.5m。

灰黄色,饱和,软塑~硬塑。无层理,切面粗糙,粘塑性较差,含5%~10%砾砂,局部可见少量碎石,次棱角状,成分以凝灰岩为主,含铁锰质斑、高岭土斑。埋深44.4~67.0m,厚度0.6~3.4m。

灰绿、灰黄色,饱和,中密,碎石含量15~20%,次棱角状为主,粒径2~6cm,角砾含量一般大于20%,碎石和角砾成分为凝灰岩,部分碎石和角砾手捏易碎,其余为粘性土。局部砾含量较少以粉质粘土为主,可~硬塑状,厚层状。埋深66.0~69.1m,揭露厚度一般大于8m。

灰绿色,硬塑~坚硬。原岩结构不清晰,大部分已成土状,偶见原岩结构及原岩团块,铁锰质渲染,部分高岭土化,局部可见少量强化碎块,手捏易碎。埋深28.9~73.1m,厚度0.6~2.8m。

灰绿、灰黄、灰紫、褐灰色,岩质较硬,凝灰结构,块状构造,风化强烈,矿物成分显著变化,裂隙很发育,呈网状,列席面铁锰质渲染,岩芯很破碎,呈碎石~碎块状,局部呈短柱状。埋深9.8~78.1m,厚度0.2~9.1m。

灰绿、灰紫色,岩质坚硬,凝灰结构,块状构造,岩质新鲜,节理裂隙较发育~发育,主要见与轴心夹角0~5、50~60、70~80三组,闭合状,局部微张,沿裂隙面见铁锰质渲染,次生节理网状分布,岩芯破碎,多呈块状,少量呈短柱状。埋深11.9~84.5m,揭露厚度3.1~13.2m。

灰绿、灰紫色,坚硬,凝灰结构,块状构造,岩质新鲜,节理裂隙不甚发育,岩芯较完整,多呈短柱——柱状,最大柱长35cm,重击难碎,断口锋利。埋深25.1~41.0m,厚度大于5m。

5.2.4 施工总体安排

5.2.4.1 施工部署

5.2.4.1.1、施工用临时码头:由于码头工程在施工过程中是孤岛施工,附近无其它可上下船作业的地方,需从海堤后栈桥附近建临时简易码头二座,可作为施工材料及施工人员的运输。

5.2.4.1.2、砼来源:水上现浇构件砼大部份采用搅拌船浇注砼,栈桥有部份采用陆上注筑砼。

5.2.4.1.3、 砼预制构件:卸船码头和装船码的预制构件由施工单位在预制厂内制作,采用水上运输运至施工现场进行水上安装施工。栈桥及施工码头预制构件由施工单位现场建造预制场,进行制作运至码头现场,采用架桥机安装及部份构件需现场装船由水上起重船进行安装。

5.2.4.1.4、临时设施:西便道的辅助房北侧以办公生活区为主,进港南线道路南侧为生产区,(详见施工总平面图)

5.2.4.1.5、施工用临时水、电

给施工单位提供的水、电接口至施工场地附近,由施工单位连接至临时设施及施工现场。由于岛上水资源短缺及电力不足,水上施工部份由施工单位配置发电船及供水船来解决,以解决施工现场供电供水的矛盾。

5.2.5 主要施工方案

5.2.5.1 施工工艺总流程

桩基础→预制构制作→桩帽及横梁现浇→构件安装→节点现浇→面板安装→现浇面层、皮带机支架砼平台和转运楼及变电房施工→附属设施安装→工程扫尾→工程竣工。施工工艺总流程见下图:

5.2.5.2 沉桩工程

5.2.5.2.1 概述

5.2.5.2.2 水上沉桩工艺流程

水上沉桩施工工艺流程图

5.2.5.2.3 打桩船选用

前栈桥、卸船码头最长桩长是、77~88m,打桩船选用桩架离水面高度65~93.5m四艘。根据制桩进展的实际情况,力争卸船码头、装船码头、施工码头、栈桥同时进行施打作业。运桩选用1000t—2000t方驳六艘和1000~3000kw拖轮三艘。

5.2.5.2.4 沉桩定位测量

根据本工程码头离岸较远的特点,采用GPS系统进行沉桩测量定位。GPS ETK 定位精度(平面位置和高程)已达到厘米级,可以满足沉桩精度要求;利用GPS RTK定技术进行沉桩定位测量具有定位方便、速度快的特点,可实时提供放样点的三维坐标且不受天气影响,可全天候作业,在外海水域作业优点突出。

5.2.5.2.5 系统设置和调试

打桩船到达沉桩桩位后,首先对船载GPS海上定位系统接收基准站发射的数据链的情况进行调试准备。将接收机、流动站电台、手薄按要求设置后,利用测控中心提供的控制点进行检测JGJ∕T 365-2015 太阳能光伏玻璃幕墙电气设计规范,其平面定位精度按下式估算:

m ———预估的RTK测量点位置中误差。

m站 ————— 基准站GPS平面控制点位中误差,B级网最大取10mm

a —— RTK测量仪器标称精度水平固定误差,Trimble 5700 GPS 为10mm

b ——— RTK测量仪器标称精度水平比例误差,Trimble 5700 GPS 为1ppm

D ——— 基准站到流动站距离道路淤泥软基处理施工方案,本工程取10km

将以上数据代入上式得一数值,即一次RTK测量的平面点位误差精度,取它的两倍中误差作为一次RTK测量的限差要求,可得采用RTK方式测量的成果与测控中心提供的点的三维坐标较差在34mm限差要求范围内。如不满足要求,应检查原因,重新检测,直到满足要求,才能用于沉桩控制。

5.2.5.2.6 定位数据的计算准备

©版权声明
相关文章