资源下载简介
安庆长江公路大桥施工方案简介:
安庆长江公路大桥施工方案部分内容预览:
塔吊安装高度为190M,在承台施工时可采用埋入基础节或预埋锚固螺栓,当承台施工完毕以后,立即将塔吊安装至50M的基本高度,以后随着索塔的升高,不断自升接高,索塔施工的所有机具、材料等垂直或在塔周围的运输,都由塔吊来完成。
施工电梯布置一台,设置于塔吊对称位置的江侧。
4.2.3 混凝土泵车及泵管布置
混凝土垂直输送泵管沿塔柱外侧布设DB33∕T 1183-2019 城镇绿化废弃物资源化利用技术规程,至横梁顶面后。(如附图中的平面图所示。)用Ω型卡固定在预埋的专用架上,并用绳扣隔一定距离将其吊挂于塔柱施工的原模板对拉螺栓上,输送泵管直径为Φ125mm,随塔身的上升而接长。工作面上采用水平管,或三通截止阀
外接软管。采用水上拌合,泵车设在拌合浮箱上。
用两台高压多级水泵分别在顺桥方向的左右两侧,布置见附图。用长江水作为施工用水水源。上水管沿泵管外侧附着敷设。
从总配电箱接出动力电缆,绕承台半周,分别输送给塔吊、电梯及高压水泵的电动机,电缆随塔吊一起上升布置垂直动力电缆。两塔柱工作平面内设小型配电板,以满足工作面上的电焊机、振动器、照明等电力需要。
下塔柱从承台顶至下横梁底面高40.601m,将其划分成9节段,每节4.5m,其余部分与下横梁一起浇注。
下塔柱为变截面外倾柱,下塔柱采用平衡支架作为脚手架现浇施工,该支架与横梁施工用支架配套使用,即在进行下塔柱施工时逐步加高支架至完成其施工,然后通过支架的调整,进行横梁的施工。其支架布置见附图。
模板系统采用塔吊吊装翻模施工方法,配备三套模板,先安装两套模板浇注砼后,再安装第三套模板,拆除首套模板安装于第三套模板之上。每次浇注砼前有一套模板仍紧固于已浇注砼体上。其余两套模板则处于待浇注状态。紧固于塔体上的支承模板是依靠自身抱箍于塔身的较大摩擦面而产生的摩擦力支承其上的两套模板重量和其他施工荷载。
模板为专用定型钢模板,其构造与中、上塔柱的模板相配套统筹考虑设计。模板高统一为2.25米,每塔肢共制作三节。为了索塔美观,接缝水平设置,并保证塔柱各面基本水平一致。模板通对拉螺杆连接到到劲性骨架上加固。变截面由收分模板及角模来实现。按混凝土分层两塔柱对称两边设9道水平拉杆,每道拉杆由4根Φ32精轧螺纹钢筋组成。拉杆随塔柱施工逐道安装,拉杆主要用于控制塔柱因施工荷载和自重产生的横向水平位移,增加塔柱的稳定性及减小根部初应力,防止塔柱根部混凝土开裂。下塔柱施工过程中建议业主方要求监控单位在塔柱根部预埋应力片,以方便控制根部初应力。
下塔柱的混凝土施工要确保对称,以保持结构稳定。施工中随时观测劲性骨架,通过松紧拉杆调节等倾角,以确保其定位准确。
内模采用组合钢模与2[10钢楞拼装,采用Φ48×3.5钢管脚手架作为支撑。
下塔柱下部25.5米高度范围内,设计为实体结构,而塔柱砼标号为C50,水化热峰值将达到65℃。必须采取温控措施,防止产生温差裂缝。
4.5、中、上塔柱施工
4.5 .1中上塔柱施工节段划分
中塔柱从上横梁顶部至中上塔柱的交接处高为80.88m,将其划分成18个节段进行施工,除最后一节高度为4.38m,其余每个节段高4.5m。上塔柱从中、上塔柱交接处至上塔柱顶高为49.3米,将其划分成11个节段进行施工,除最后一节高度为4.3m,其余每个节段4.5m。
中、上塔柱的第一、二节段由塔吊吊装翻模施工,然后安装爬架。中、上塔柱采用架体式爬模施工工艺,爬模以爬架和塔柱外模为其两大元素,随混凝土浇筑高度的上升,两者交替垂直或者斜向爬升。
4.5.2 架体式爬模的构造
架体式爬模由架体系统、模板系统、提升系统及附属导向机构四部分组成。
架体系统从高度方向上分为上部的工作架、下部的附墙固定架和悬挂脚手架三部分组成。架体总长度为24米,架体分顺墙向的P1架和横桥向的P2架,该索塔共制作8组架体。工作架高14米,分7个操作层,用于施工操作平台和堆放施工用材;附墙固定架高6米,基中附墙框高4.25米,分两个操作层,附墙固定架采用锥形螺母固定技术,将附墙固定架紧固在塔肢混凝土上,即利用混凝土施工时预埋的用于内外模板对拉拉杆的锥形螺母,锥形螺母与外模采用方头螺杆固定,拆模待混凝土达到一定强度后,锥形螺母即可作为传递架体重量给塔柱的重要部件。悬挂脚手架高4米,分两个操作平台,待提升架体后用于锥形螺母方头螺杆的推拆和螺孔修补的工作平台。
模板系统:内外模均采用整体定型钢模,每套模板分为三节,每节2.25m,每节分为四块制作,其中转 角部分纳入横桥向面内整体制作。每次浇筑节段共4.5m高混凝土,其中一节段2.25m紧固在塔壁上,作为底节接口模板,下次浇筑时上次的顶节模板作为该次嵌固底节接口模板,上次底节和中节模板作为该次浇筑混凝土用模板,重复爬升施工。由于下、中塔柱为倾斜结构,可通过计算调整其内外的高度,以确保每层砼浇筑高度为4.5m。
提升系统:由于架体式爬模系统中索塔外模与架体互为支承,相互爬升,故模板和爬架爬升动力采用5T手拉葫芦,其中若塔吊起吊能力能满足施工需要,也可利用塔吊进行模板提升,以加快施工进度。
导向系统包括导向滑轨、限位轮、伸缩脚轮。
导向滑轨:每套架体式爬模设置6组导向滑轨,每组导向滑轨由2 [12槽钢对口焊接在模板上,槽钢之间留3cm左右间隙。其中横桥向面每块模板上设一组导向滑轨,顺桥向面每块模板上设两组导向滑轨。(见附图)
限位轮:限位轮设置在架体上与模板上的导向滑轨位置相对应,每组滑轨设两个。
伸缩脚轮:由橡胶轮和伸缩螺杆组成。爬架提升时,脚轮旋出2~3cm,以保证已浇混凝土不受损坏并能变滑动为滚动磨擦,减小提升阻力。
4.5.3 中、上塔柱架体式爬模施工工艺
架体提升顺序为:顺桥向的P1架固定,先提升横桥向两面的P2架,P2架就位固定后,再提升P1架。
提升前先清理架体上杂物,转移过重的物体,小型机械要固定在架体上,检查模板和架体上吊点是否可靠,手拉葫芦是否损坏,架体保险钢丝绳及吊点是否可靠。
在模板吊点与架体吊点之间按P1架、P2架在斜向及垂直爬升的受力特点安装手拉葫芦。
检查动力系统安全性后,拉紧所有5T手拉葫芦,使架体重量由螺杆转移到手拉葫芦上。并使每个葫芦受力均匀。
拆附墙框上M24方头螺杆。P1架上有24个M24螺杆,P2架上有20个M24螺杆。
将伸缩脚轮旋出2~3cm,变滑动磨擦为滚动磨擦。
由富有经验的施工人员统一指挥,要特别注意架体保持动态平衡,尤其是中塔柱提升施工时,外侧P1架由于塔柱内倾造成此片架体脚轮受力最大,架体提升时极易由于不平衡而造成脚轮箍断裂。每次架体提升高度为9.0m。
架体提升至与设计相差近20mm时,放慢提升速度,提升到位后伸缩轮退回,在施工中对于内侧P1架,应先退回下层,再退回上层,使附墙框下部先贴墙面,P2架由于塔身垂直,伸缩轮退回无先后顺序。
固定螺栓一端为锥形丝口,另一端为带正方形方头的丝口螺杆,固定螺栓的安装工序为:先将方头螺杆旋入预埋的锥形螺母中,然后用扳手通过方头将螺杆紧到位,第三步是加上垫板和M24螺帽,将螺帽反复均衡拧紧,使架体紧贴墙面。
用Φ22钢丝绳加设保险。
模板提升前先清除模板上一切杂物,并准备好拆模、清理模板用工具及脱模剂(新鲜机油),并将第一节及第二节模板的对拉螺栓拆除。
由于模板可用塔吊提升,故在脱模前将5T葫芦预紧或塔吊预吊以防止由于脱模后造成安全事故,每次提升一节2.25m模。
清理模板表面混凝土渣,用新鲜机油或其他物质作为脱模剂,要求均匀涂刷,并防止脱模剂过多污染钢筋或混凝土。
模板提升就位,就位后,安装好接头螺杆,及对拉拉杆。
测量监测调整模板,测量复测,合格后请监理工程师验收签字转入下一道工序施工。
模板提升施工工艺流程如下:
准备工作 → 安装动力 → 紧葫芦 → 模板脱位 → 清渣、涂脱模剂→ 均匀提升就位 → 测量验收
4.5.4 中上塔柱内模施工
中、上塔柱内模采取翻模施工,内模采用组合钢模与2[10钢楞拼装,采用Φ48×3.5钢管脚手架作为支撑。脚手架四边与已浇混凝土内壁支撑,沿高度方向每4.5m设一操作平台,每20m通过塔身内壁的四周预埋件设置一卸力平台。
上塔柱拉索锚固区段内的齿板设置相应的齿形定型模板与竖向内模组成一个整体。由于齿板受塔柱节段的影响,在施工中以保证每一根拉索的锚固台一次浇筑成型为原则T/CECS718-2020标准下载,可适当调整每次混凝土浇筑高度,以保证锚固块的整体性。
4.5.6 主动横撑设置
中塔柱施工时,随着塔柱的爬升,塔柱自由悬臂长度逐渐增大时,为了克服塔身在混凝土自重、施工荷载、风载及日照温差等作用下,使得塔柱根部产生的很大的次应力。为了消除之,采用主动力横撑方法在中塔柱的双肢间每隔15m左右一道主动水平横撑横撑,并与两塔柱固接。合计5道横撑。为更好控制塔桩根部的次应力,中塔柱施工过程中建议业主方要求监控单位在上、下塔柱交接处塔柱根部预埋应力片,以方便控制根部初应力,为设置横撑具体数及施加预顶力的大小提供依据。横撑设置好后,还可用于塔吊及电梯的附着。
横撑结构。每道横撑由4根φ630mm,壁厚δ11mm钢管组成,顺桥向两两并排对称布置。并排钢管之间用型钢连接成整体,组成平面桁架结构,增加顺桥向稳定,且确保塔吊及电梯附着强度和刚度。为减少横撑自重挠度,增加竖向整体刚度,也为方便横撑的架设和施力,在横撑中部设置8根钢管立柱。在立柱上设有顺桥向牛腿,用以支撑横撑。立柱间也用型钢连接,同横撑桁架一起组成空间桁架,增加施工过程中的整体稳定。横撑施力前从中部一分为二,两段与塔柱预埋件焊接,中间部位搁置在立柱牛腿上,利用立柱作为工作平台,在横撑中部设置千斤顶施力系统。施力完成后,将横撑中部焊接联成整体。
4.6 劲性骨架安装
劲性骨架作为索塔施工导向、钢筋定位、模板固定之用《给水排水多功能水泵控制阀应用技术规程》CECS132:2002.pdf,也是上塔柱环向预应力钢束塑料波纹管和斜拉索钢套管定位安装必不可少的。劲性骨架主要由角钢加工而成,在工厂分段加工,现场分段超前拼接。劲性骨架连接利用M30×70高强螺栓连接。