锚杆承载力增强机理_关键问题以及设计实例

结构工程师在实际项目中遇到难题时,单纯的回避或者线性类推解决都是不可取的。

一方面,这样的处理方式无法体现工程师的自身价值;另一方面,它们还可能给工程项目带来施工风险与安全风险,造成无可挽回的经济损失。

本期文章中,用一个抗浮项目实例,聊聊结构工程师在条件受限的情况下,如何思考、研究并且解决实际工程问题。

工程概况

某安置房工程,项目总用地面积约2万㎡,总建筑面积约8.5万㎡。

项目分A、B两个地块,每个地块各建设一栋28层住宅,上部建筑面积各约为2.5万㎡;

A地块带3层地下室,B地块带4层地下室,每层层高3.8m,建筑面积均不到2.0万㎡。

由于轨道交通线从拟建的两个地块中间通过,考虑到项目开发过程可能对既有轨道交通结构产生一定影响,故主楼部分的桩基方案采用非挤土桩型(旋挖灌注桩),利用桩侧与桩端全长复式后高压注浆以提高桩基承载力,并减小桩长。

纯地下室部分埋深较大,开挖后可直达老土层,基础持力层主要以深厚的残积砂质粘性土为主,局部为全风化花岗岩层,地基承载力均较高。

实施方案考虑桩土协同承载,采用可控刚度平板式桩筏基础,既优化了结构成本,亦降低了建筑全生命过程对隧道结构的沉降量及水平位移量的影响。

抗浮方案

多层地下室的抗浮水位高,因而抗浮设计存在较大难度。

以A地块三层地下室为例,纯地下室部分的自重恒载标准值约为65kN/㎡,而底板水浮力平均高达122kN/㎡。

水浮力约是上部自重的2倍,必须采用安全可靠的抗浮方案。

由于挤土桩型使用受限,故PHC管桩无法作为第一选择,且灌注桩用做抗浮桩的成本过高,抗浮锚杆自然成为最优选项。

若将抗浮锚杆均匀分散布置在底板范围,或者布置于地下室墙柱范围以外的板下时,其优点是显而易见的:

1、底板下方的水浮力就近平衡,底板受力相对更小且更为均匀;

2、合理控制地下室结构的整体与局部变形。

已有的粘性土及砂型土中普通拉力型锚杆群锚拉拔试验结果表明,当锚固体间距不少于8D(D为锚固体直径)时,抗拔力有效系数不小于0.97;国内外相关标准亦有规定,当锚固体间距小于1.5m时,应考虑群锚效应。

综上,初步考虑将锚杆间距按1.5m控制,均匀分散布置在底板范围内。

锚杆选型

项目设计于2017年,选型分析主要依照《建筑边坡工程技术规范》GB50330-2013(以下简称边坡规范)执行,部分内容参考《岩土锚杆(索)技术规程》 CECS22:2005(以下简称为锚杆规程)。

以A地块为例,1.5m间距满铺状态下,单根锚杆的抗拔承载力特征值Ra可按下式估算:

Ra=(1.05x122-0.9x65)x1.5x1.5x1.15=180kN;

式中,1.15为预估的锚杆上拔力不均匀分布系数。

可以认为,当Ra取180kN时,地下室抗浮稳定性可初步满足要求。

B地块在相同布置情况下,单根承载力需高达250kN,才能满足设计需求。

初步设计阶段,可利用场地最不利孔点进行快速选型,A地块ZK59的工程地质剖面如下图所示:

可以看到,底板下方仍有近20m的深厚残积砂质粘性土层,且常压注浆下的土层极限粘结强度标准值只有55kPa,这对锚杆选型是非常不利的,抗拔承载力难以取高。

依据边坡规范,对于永久性抗浮地下室:安全等级按一级,锚固体抗拔安全系数取K=2.6;

以下表进行初步试算,锚杆直径180mm的情况下,长度需达到16m,似乎可以满足设计承载力需求。

同理,B地块的残积土层也有近18m,锚杆长度需达到20m以上,方能满足估算需要。

但是,特别需要注意一点,上述估算长度均大幅超出边坡规范8.4.1条中对土层锚杆合理构造长度的约定:

不应小于4m,且不宜大于10m。

锚杆规程也有类似规定:规程要求,当土层锚固段长度为10m时,影响系数取

© 版权声明
<>
相关文章